Genetic and hypoxic alterations of the microRNA-210-ISCU1/2 axis promote iron–sulfur deficiency and pulmonary hypertension
نویسندگان
چکیده
Iron-sulfur (Fe-S) clusters are essential for mitochondrial metabolism, but their regulation in pulmonary hypertension (PH) remains enigmatic. We demonstrate that alterations of the miR-210-ISCU1/2 axis cause Fe-S deficiencies in vivo and promote PH. In pulmonary vascular cells and particularly endothelium, hypoxic induction of miR-210 and repression of the miR-210 targets ISCU1/2 down-regulated Fe-S levels. In mouse and human vascular and endothelial tissue affected by PH, miR-210 was elevated accompanied by decreased ISCU1/2 and Fe-S integrity. In mice, miR-210 repressed ISCU1/2 and promoted PH. Mice deficient in miR-210, via genetic/pharmacologic means or via an endothelial-specific manner, displayed increased ISCU1/2 and were resistant to Fe-S-dependent pathophenotypes and PH. Similar to hypoxia or miR-210 overexpression, ISCU1/2 knockdown also promoted PH. Finally, cardiopulmonary exercise testing of a woman with homozygous ISCU mutations revealed exercise-induced pulmonary vascular dysfunction. Thus, driven by acquired (hypoxia) or genetic causes, the miR-210-ISCU1/2 regulatory axis is a pathogenic lynchpin causing Fe-S deficiency and PH. These findings carry broad translational implications for defining the metabolic origins of PH and potentially other metabolic diseases sharing similar underpinnings.
منابع مشابه
The VHL-dependent regulation of microRNAs in renal cancer
BACKGROUND The commonest histological type of renal cancer, clear cell renal cell carcinoma (cc RCC), is associated with genetic and epigenetic changes in the von Hippel-Lindau (VHL) tumour suppressor. VHL inactivation leads to induction of hypoxia-inducible factors (HIFs) and a hypoxic pattern of gene expression. Differential levels of specific microRNAs (miRNAs) are observed in several tumour...
متن کاملMethyl Sulfone Blocked Multiple Hypoxia- and Non-Hypoxia-Induced Metastatic Targets in Breast Cancer Cells and Melanoma Cells
Metastatic cancer causes 90% of cancer deaths. Unlike many primary tumors, metastatic tumors cannot be cured by surgery alone. Metastatic cancer requires chemotherapy. However, metastatic cells are not easily killed by chemotherapy. These problems with chemotherapy are caused in part by the metastatic cell niche: hypoxia. Here we show that the molecule, methyl sulfone, normalized metastatic met...
متن کاملMicroRNA‐210 Decreases heme Levels by Targeting Ferrochelatase in Cardiomyocytes
BACKGROUND MicroRNA-210 (miR-210) increases in hypoxia and regulates mitochondrial respiration through modulation of iron-sulfur cluster assembly proteins (ISCU1/2), a protein that is involved in Fe/S cluster synthesis. However, it is not known how miR-210 affects cellular iron levels or production of heme, another iron containing molecule that is also needed for cellular and mitochondrial func...
متن کاملNew insights into the pathology of pulmonary hypertension: implication of the miR-210/ISCU1/2/Fe-S axis
Elevated pulmonary arterial pressure in patients with pulmonary hypertension (PH) is mainly caused by increased pulmonary vascular resistance (PVR), due primarily to sustained pulmonary vasoconstriction and excessive pulmonary vascular remodeling. According to the current classification, PH has been classified into five categories based on etiology (Simonneau et al, 2013). Among them, group 1 o...
متن کاملMitoKATP regulating HIF/miR210/ISCU signaling axis and formation of a positive feedback loop in chronic hypoxia-induced PAH rat model
In the present study, we studied the mechanism of mitochondrial ATP-sensitive potassium (mitoKATP) channels regulating hypoxia-inducible factor (HIF)-1α/microRNA (miR)-210/mitochondrial iron-sulfur protein integrin (ISCU) signaling axis and forming a positive feedback loop in chronic hypoxia-induced pulmonary arterial hypertension (PAH) by using in vivo animal model. Two hundred healthy adult S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2015